Smart Solutions Improving Water Supply Reliability

Marc Slagt, Sr. Technical Service & Development Scientist

WATER STRESS BY COUNTRY

ratio of withdrawals to supply

Low stress (< 10%)

Low to medium stress (10-20%) Medium to high stress (20-40%) High stress (40-80%)

Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

Water use and priorization

Switch to alternative water source

Change concept to ZLD/MLD

Common factor

Think and Talk "SOLUTIONS"

Smart Solutions : maximize what you have now

OUPONT

Smart Solutions The value of cooperation

Hellenic Petroleum S.A. ASPROPYRGOS REFINERY

Athens, Greece.

(Photo courtesy of Hellenic Petroleum SA.)

Existing plant specification – Ion Exchange Technology

Existing plant	
System history	39 years old (1980)
Installed technology	Air holddown system
Regeneration	Counter current
Flowrate	2 * 60 m ³ /h
Runlength	2500 - 2700 m ³ / cycle
H_2SO_4 consumption	750 kg 100%
NaOH consumption	1240 kg 100%

What Listening tells you – Key Takeaways

Ź

What you hear

Question

Solution vs Product

• Cation = 4 yrs.

A "component" impacts < 1% of the cost

A "solution" impacts >80% of the cost

Typical Plan

- 1. Understanding the true needs
- 2. On site technical discussion & data gathering
- 3. Technical evaluation of existing equipement
- 4. Assessment of the water composition
- 5. Assessment of the vessel, piping etc.
- 6. Recalculation of the system using sophisticated WAVE software
- 7. Economical assessment
- 8. Proposal presentation & technical recommendation
- 9. Support, training & implementation
- 10. On site evaluation of results

Assessment of the feedwater

Table 1. Feed water composition						
Cations	Design	Anions	Design			
Са	2.6	CI	0.11			
Mg	0.5	NO ₃	0.2			
Na	0.21	SO ₄	0.5			
К	_	HCO ₃	2.5			
_	_	Silica	0.08			
Total Cations	3.31	Total Anions	3.31			

Result:

Favourable hardness to alkalinity ratio Use of a weak acid cation resin is beneficial

Favourable % FMA of total anions Use of a weak base anion is beneficial

Assessment of the equipment

Result:

- Vessel lifetime could be extended
- Sufficient bedheight available
- Increase of flowrate is possible

Resin configuration <u>Cation</u> - Upgrading the system to a layered bed

WAC* : AMBERLITE[™] HPR8300 H:

- Excellent separation for layered bed
- Increased capacity \rightarrow scope
- Low chemical consumption \rightarrow scope
- Light color for color distinct

SAC* : AMBERLITE™ HPR1300 H:

- High density for excellent separation
- High capacity
- Low Na leakage = better quality \rightarrow scope
- Dark color for visible separation

* WAC = Weak Acid Cation resin SAC = Strong Acid Cation resin

Amberlite[™] HPR1300 H

Resin configuration Anion - Upgrading the system to a layered bed

WBA*: AMBERLITE[™] HPR9600:

- Excellent separation for layered bed •
- Increased capacity \rightarrow scope •
- Low chemical consumption \rightarrow scope ۲
- Light color for color distinct

SBA*: AMBERLITE[™] HPR4200 CI:

- Excellent physical strength ۲
- High capacity ٠
- Low silica leakage = better quality \rightarrow scope
- Darker color for visible separation ۰

* WBA = Weak Bae Anion resin SBA = Strong Base Anion resin

Amberlite[™] HPR9600

USING WAVE – <u>Water Application Value Engine</u>

CALCULATION OF THE EXCHANGERS

Resin choice	AMBERLITE HPR	AMBERLITE HPR 1300 H	AMBERLITE HPR	AMBERLITE HPR
Resin volume [litres]	7000	7000	6000	6000
Reference ionic form for calculation	Н	Na	Free base	Cl
Volume to purchase [L]		7525		
Potential running time [h]	52,3	52,9	52,3	52,3
Gross throughput [m ³]	6276	6347	6279	6277
Ionic load [eq]	15220	5553	4923	2191
Organic load [g/L R as KMnO4]		2,1	0,8
Operating capacity [eg/LR]	2.17	0.79	0.82	0.37
Flow-rate [BV/h]	17,1	17,1	20,0	20,0
Mode of regeneration	Stratabed	Stratabed	Stratabed	Stratabed
Leakage (overrun) [%]	3		2	
Regenerant type		H_2SO_4		NaOH (25°C)
Concentration [%]	0,7	0,7		3,5
Regenerant ratio [% theory]	118	423	142	420
Regenerant Level [g/L R]		164		61
Total regen. [kg 100%]		1150		368

Solution Proposal & Performance Promise

Solution Proposal

- Rebed the system
- Adjust regeneration settings
- Replace nozzles
- Enlarge feedpump

Performance promise

- Double the throughput Double the flowrate
- Less chemicals
- Higher quality

Evaluation of the Solution – Multiple WIN

	Old resin	New resin
Throughput (m ³)	~2500	>5000
Number of regenerations/y	~195	~106
H ₂ SO ₄ consumption (tons 100% / year)	146.2	121.9
NaOH consumption (tons 100% / year)	146.2	45.1
NaOH for neutralization (tons 100% / year)	95	5.3
Waste water / year (m ₃ /year)	37537	15900

OUR SOLUTION:

Impacted effectively the significant part of the cost pie

Key learnings

Great results were achieved by cooperating with a dedicated Aspropyrgos Refinery Utilities team, managing various implementation difficulties:

- Limited options to change the regneration protocol were challenging.
- Resin blocking with air needed carefull adjustment by the operational team
- Regeneration flow control needed carefull control to prevent CaSO4 precipitation

Effective cooperation results in value creation

We delivered what we promised with our solution: All targets were met

Additional overall cost saving of >50% OPEX - Our solution is a pay back for the resin replacement

The value of a solution exceeds by far the product it self

Hellenic Petroleum S.A. ASPROPYRGOS REFINERY

Special thanks to the refinery operator team and in particular Mr Y. Liberopoulos

(Photo courtesy of Hellenic Petroleum SA.)

Copyright © 2019 DuPont and Dow. All rights reserved. The DuPont Oval Logo and DuPont[™] are trademarks of E. I. du Pont de Nemours and Company or its affiliates. The Dow Diamond Logo, Dow[™] are trademarks of the Dow Chemical Company or its affiliates.

Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other intellectual property rights of third parties.

The information provided herein is based on data DuPont believes to be reliable, to the best of its knowledge and is provided at the request of and without charge to our customers. Accordingly, DuPont does not guarantee or warrant such information and assumes no liability for its use. If this product literature is translated, the original English version will control and DuPont hereby disclaims responsibility for any errors caused by translation. This document is subject to change without further notice.